skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adamson, Tristan T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The coupling of carbon dioxide and ethylene to generate value added chemicals has been part of recent fundamental advances to improve sustainability in commercial chemical synthons. A formal zerovalent triphosphine ligated ruthenium complex, (tBuP(CH2CH2PEt2)2)Ru(κ-S-DMSO)(C2H4), was found to promote CO2 activation, affording products derived from both a 1:1 and 1:2 ethylene to CO2 coupling stoichiometry. The equimolecular coupling reaction selectively afforded a five-membered ruthenium lactone species, (tBuP(CH2CH2PEt2)2)Ru(κ-S-DMSO)(κ-C,κ-O-CH2CH2CO2), under low CO2 pressure. At higher CO2 pressure, the ruthenium lactone complex activated a second equivalent of CO2, yielding a dimeric methylmalonate ruthenium compound, [(tBuP(CH2CH2PEt2)2)Ru(μ2, κ1-O, κ2-O,O-O2CCHCH3CO2)]2. Both carbon dioxide activation products were characterized by X-ray diffraction. Preliminary mechanistic studies suggest that reversible β-H elimination is a key process in conversion between the two ruthenium carboxylate species. A rare formally zerovalent ruthenium coordination compound stabilized only by ethylene and DMSO ligands was also isolated and characterized. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026